Как вычислить объем формула

Содержание

Как посчитать объем – формулы расчета

Одна из интереснейших задач геометрии, результат решения которой важен и в физике, и в химии, и в других областях – определение объемов. Занимаясь математикой в школе, детки часто задаются мыслью: «Зачем нам это нужно?» Мир вокруг кажется настолько простым и понятным, что определенные школьные знания относят к разряду «ненужных». Но стоит столкнуться, к примеру, с транспортировкой и возникает вопрос о том, как посчитать объем груза. Скажете, что ничего проще нет? Ошибаетесь. Знание расчетных формул, понятий “плотности вещества”, “объемной плотности тел” становятся необходимы.

Формулы вычисления объёма прямоугольника и параллелепипеда

Школа — это необъятная чаша знаний, которая включает в себя множество дисциплин, которые могут заинтересовать любого ребенка. Математика — царица точных наук. Строгая и дисциплинированная, она не терпит неточностей. Даже повзрослев, в обычной жизни мы можем столкнуться с разными математическими проблемами: вычисление квадратных метров для укладки плитки в ванной, кубических метров для определения объема бака и т. д., чего уж говорить о школьниках, которые только-только начинают свой математический путь.

Вычислить объём прямоугольника

Очень часто, начав изучать математику, точнее, геометрию, ученики путают плоские фигуры с объемными. Куб называют квадратом, шар — кругом, параллелепипед обычным прямоугольником. И здесь есть свои тонкости.

Сложно помочь ребенку в выполнении домашнего задания, не зная точно, объем или площадь какой фигуры — плоской или же объемной, нужно найти. Невозможно найти объем плоских фигур, таких как квадрат, круг, прямоугольник. В их случае можно найти лишь площадь. Прежде чем переходить к выполнению задачи, следует подготовить нужные атрибуты:

  1. Линейка, для того чтобы измерить необходимые нам данные.
  2. Калькулятор, для того чтобы в дальнейшем подсчитать расчеты.

Найти объем прямоугольного параллелепипеда

Онлайн калькулятор. Объем прямоугольного параллелепипеда.

Используя этот онлайн калькулятор для вычисления объема прямоугольного параллелепипеда, вы сможете очень просто и быстро найти объем прямоугольного параллелепипеда, зная значения его длины, ширины и высоты.

Воспользовавшись онлайн калькулятором для вычисления объема прямоугольного параллелепипеда, вы получите детальное решение вашего примера, которое позволит понять алгоритм решения задач и закрепить пройденный материал.

Как высчитать кубический метр объёма

Часто приходится задаваться такими вопросами: «А как много нужно чего-нибудь, чтобы наполнить вот это?» Или наоборот: «А сколько этого поместится сюда?» Ведь постоянно приходится что-то куда-то переносить, перекладывать или перевозить, что-то строить, пристраивать или перестраивать. И тут приходится брать в руки обычную или лазерную рулетку и вспоминать единицу измерения объема — кубометр.

Как посчитать объём в емкостях различных форм?

Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.

Формула объема шара:

V = 4 π R3
3

где V — объем шара,
R — радиус шара,
π = 3.141592

Как рассчитать объем емкости различной формы

Резервуары и цистерны используются для перевозки и хранения различных видов топлива, нефти, воды и газа, некоторых строительных материалов, химических веществ, а также пищевых продуктов. Многие не знают, как рассчитать объем емкости, ведь они могут иметь различную геометрическую форму:

  • Конуса;
  • Цилиндра;
  • Сферы;
  • Прямоугольного параллелепипеда.

В нашей статье ознакомимся с нюансами расчёта для конкретных геометрических тел.

Как вычислить объем круглой емкости

Полезно знать

Формулы, позволяющие находить объём цилиндра в метрах и литрах

Среди множества геометрических фигур часто встречается и цилиндр. Это геометрическое тело применяется в многочисленных расчётах. Согласно принятой терминологии под таким понятием принято иметь ввиду тело геометрического типа, которое в своей основе имеет поверхность. Данная поверхность представляет также цилиндрическую форму.

В литературе данная поверхность часто именуется, как поверхность бокового вида. Кроме этого, в такой фигуре есть пара поверхностей, носящих наименование оснований. Эти основания цилиндра представляют собой окружности равного диаметра. Цилиндр, в основании которого находится круг принято считать круговым.

Ещё со школьных времён знакома всем фигура цилиндра классического типа. Это и есть круговой цилиндр.

Школьные знания – практическая основа

как посчитать объем

Учителя школ, преподавая основы геометрии, предлагают нам такое определение объема: часть пространства, занимаемая телом. При этом формулы определения объемов давно записаны, и найти их можно в справочниках. Определить объем тела правильной формы человечество научилось задолго до появления трактатов Архимеда. Но только этот великий греческий мыслитель ввел методику, дающую возможность определить объем любой фигуры. Его умозаключения стали основой интегрального исчисления. Объемными считают фигуры, получаемые в процессе вращения плоских геометрических фигур.

Евклидова геометрия с определенной точностью позволяет определить объем:

l – длина, b – ширина, h – высота

S – площадь основания, h – высота

как посчитать объем прямоугольника

Что такое кубометр

Кубический метр — это условная фигура (куб), имеющая длину, ширину и высоту, равную одному метру

Как рассчитать кубический метр, если эти параметры имеют другое значение? Если их произведение (результат перемножения) равно единице, то фигура, которую они составляют, имеет объем один кубометр. Например, объем размерами 1 м ширины, 0,5 м высоты и 2 м длины имеет в себе один кубометр.

В практической деятельности приходится высчитывать объемы различных помещений, и тут можно руководствоваться простой формулой: объем прямого параллелепипеда составляет произведение площади основания на высоту. Комната площадью 32,5 метра и высотой потолков 2,2 метра имеет 71,5 кубометра (куба). Часто помещение имеет наклонный потолок, и тут встает вопрос о высоте. В таком случае можно взять среднее значение этого параметра и получить приблизительный объем.

Если требуется точное значение, то надо помещение мысленно разделить на параллелепипед, имеющий высоту самой низкой стены и подсчитать его объем; затем высчитать объем параллелепипеда, имеющего такую же площадь и высоту, равную разности высот самой высокой и самой низкой стен, поделить пополам и прибавить к объему первого параллелепипеда.

Достаточно часто приходиться рассчитывать объемы различных полостей. Например, при заливке фундамента требуется знать необходимое количество бетонной смеси. Тут все достаточно просто. Точно так же умножаем площадь основания на высоту и получаем искомое значение. Важно вычисления и замер производить в тех единицах измерения, в каких требуется узнать искомое значение. В случае с бетонной смесью ее закупка производится обычно в кубах, поэтому и размеры опалубки под заливку фундамента измеряем в метрах.

Что такое кубометр

Типы цилиндров

В математике существует несколько типов цилиндров, которые постоянно используются в геометрии.

  1. Цилиндр прямого типа. Это геометрическая фигура, которая имеет прямой угол между боковой поверхностью и основаниями. Такой тип самый распространённый и часто применяется в решении большого количества задач.
  2. Наклонный цилиндр. Исходя из основания фигуры, можно сделать вывод, что угол между боковой поверхностью и основаниями фигуры будет отличным от прямого. При этом он может колебаться в своём значении, как в большую, так и в меньшую сторону от прямого угла.

Что предпринимать, если форма тела не столь четко определена?

Определение объема сложных геометрических конструкций – работа не из легких. Стоит руководствоваться несколькими незыблемыми принципами.

  • Любое тело можно разбить на более простые части. Объем равен сумме объемов его отдельных частей.
  • Равновеликие тела имеют равные объемы, параллельный перенос тел не меняет его объема.
  • Единицей объема считают объем куба с ребром единичной длины.

Наличие тел неправильной формы (вспомним пресловутую корону царя Герона) не становится проблемой. Определение объемов тел гидростатическим взвешиванием вполне возможно. Это процесс непосредственного измерения объемов жидкости с погруженным в нее телом, который будет рассмотрен ниже.

Как определить объём сферического изделия

Сферические изделия встречаются в нашей жизни почти каждый день. Это может быть элемент подшипника, футбольный мяч или пишущая часть шариковой ручки. В некоторых случаях нам необходимо узнать, как рассчитать кубатуру сферы для определения количества жидкости в ней.

Как утверждают эксперты, для вычисления объёма этой фигуры используется формула V=4/3ԉr3, где:

  • V – подсчитываемый объём детали;
  • R- радиус сферы;
  • ԉ – постоянная величина, которая равняется 3,14.

Для проведения необходимых вычислений нам нужно взять рулетку, зафиксировать начало измерительной шкалы и провести замер, причём лента рулетки должна проходить по экваторe шара. После этого узнают диаметр детали, поделив размер на число ԉ.

как рассчитать кубатуру

А теперь ознакомимся с конкретным примером вычисления для сферы, если её длина по окружности равняется 2,5 метрам. Сначала определим диаметр 2,5/3,14=0,8 метра. Теперь подставляем это значение в формулу:

Формулы объёма цилиндра

  1. Через высоту и радиус основания:
    V=π·r²·h,
    где r — радиус основания, h — высота цилиндра, π — число Пи (π≈3,14159…).
  2. Через высоту и диаметр основания:
    V=π·h·D²/4,
    где D — диаметр основания, h — высота цилиндра, π — число Пи (π≈3,14159…).
  3. Через высоту и площадь основания:
    V=S·h,
    где S — площадь основания, h — высота цилиндра.

Примеры задач

Задание 1
Найдите объем цилиндра, если дана площадь его основания – 78,5 см 2 , а также, высота – 10 см.

Решение:
Применим первую формулу, подставив в нее известные значения:
V = 78,5 см 2 ⋅ 10 см = 785 см 3 .

Задание 2
Высота цилиндра равна 6 см, а его диаметр – 8 см. Найдите объем фигуры.

Решение:
Воспользовавшись третьей формулой, в которой участвует диаметр, получаем:
V = 3,14 ⋅ (8/2 см) 2 ⋅ 6 см = 301,44 см 3 .

Различные прикладные задачи на определение объема

Вернемся к проблеме: как посчитать объем перевозимых грузов. Каким является груз: фасованным или сыпучим? Каковы параметры тары? Вопросов больше, чем ответов. Немаловажным станет вопрос массы груза, поскольку транспорт отличается грузоподъемностью, а трассы – максимальным весом транспортного средства. Нарушение правил перевозки грозит штрафными санкциями.

как посчитать объем груза

Зная грузоподъемность транспорта, его габариты, можно просчитать возможный объем перевозимого груза. Верное соотношение этих параметров позволяет избежать катастрофы, преждевременного выхода транспорта из строя.

Задача 2. Груз – сыпучий материал: песок, щебень и тому подобное. На этом этапе без знаний физики обойтись может только классный специалист, опыт которого в грузоперевозках позволяет интуитивно определить предельно допустимый к перевозке объем.

Научный метод предполагает знание такого параметра, как плотность (объемная плотность) груза.

Используется формула V=m/ρ, где m – масса груза, ρ – плотность материала. Перед тем как посчитать объем, стоит узнать плотность груза, что также совсем не сложно (таблицы, лабораторное определение).

Эта методика также замечательно работает при определении объемов жидких грузов. При этом как единицу измерения используют литр.

Пример расчета

Допустим, нужно залить ленточный фундамент под сооружение размером 8 на 12 метров, разделенное на три помещения стенами длиной 8 и 6 метров. Примем ширину фундамента 40 см, высоту в метр. Длина составит 54 метра, а объем фундамента будет 0,4*1*54 = 21,6 м³. Это значение можно смело округлить до 22 м³.

Приготовление кубометра бетонной смеси для заливки фундамента требует примерно 350 кг цемента, 800 кг песка, 1200 кг щебня и 140 л воды. Значит, на весь фундамент нужно 154 мешка цемента по 50 кг (7,7 тонн), 17,6 тонн песка, 26,4 тонн щебня и примерно 3 кубометра воды.

Это совершенно приблизительный подсчет, навскидку, позволяющий просто прикинуть размер предстоящих материальных и трудовых затрат. Кстати, количество вынутого под фундамент грунта будет сопоставимо, а то и выше объема самого фундамента, хотя тот и не полностью находится в земле. Объясняется это тем, что траншея под фундамент роется шире для установки опалубки и сопутствующих работ.

Точно так же приходится рассчитывать потребный объем при, допустим, переезде или отправке каких-то товаров или грузов. Ведь переплачивать за лишний объем кузова заказанного автомобиля, транспортного контейнера или железнодорожного вагона никому не хочется.

Достаточно просто вспомнить (посмотреть в интернете) элементарные геометрические формулы из школьной программы и приложить здравый смысл. Ведь всегда можно приблизительно рассчитать объем мебели при переезде или коробок при отправке товара и оценить предстоящие усилия и затраты. А для более точных, окончательных расчетов всегда можно прибегнуть к помощи специалистов. Тем более что предварительный итог более или менее известен, и это может служить некоторой проверкой при согласовании условий.

4 Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

V = So · hгде V – объем параллелепипеда,
So – площадь основания,
h – длина высоты

Инструкция для калькулятора количества и объема жидкости в цистерне

Размеры вводите в миллиметрах:

Как вычислить объем круглой емкости

D – диаметр емкости можно замерить рулеткой. Необходимо помнить что диаметр – это отрезок наибольшей длины, соединяющий две точки на окружности и проходящий через ее центр.

H – уровень жидкости замеряют, используя метршток, но если такого инструмента нет под рукой, воспользуйтесь обычным стержнем из проволоки или деревянной планкой подходящей длины. Соблюдая меры безопасности, опустите строго вертикально стержень в цистерну до дна, отметьте на нем уровень, достаньте и измерьте рулеткой. Также определить H можно, измерив, расстояние от верха цистерны до поверхности жидкости и отняв этот показатель от значения диаметра.

L – длина емкости.

Если необходим чертеж в бумажном виде, целесообразно отметить пункт «Черно-белый чертеж». Вы получите контрастное изображение и сможете его распечатать, не расходуя зря цветную краску или тонер.

Нажмите «Рассчитать» и получите следующие данные:

Объём емкости – этот параметр характеризует полный объём цистерны, т.е. какое максимальное количество жидкости в кубических метрах или литрах может в нее поместиться.

Количество жидкости – сколько вещества находится в цистерне на данный момент.

Свободный объём позволяет оценить, сколько жидкости еще можно залить в емкость.

В результате, Вы получаете расчет не только объема цистерны, но и объема жидкости в неполной цистерне.

Изделия из металла следует периодически красить, тогда срок их службы значительно возрастет. Зная площадь передней поверхности, площадь боковой поверхности и общую площадь емкости легко оценить необходимое количество лакокрасочных материалов для обработки всей емкости или ее отдельных частей.

Исходные данные

Производя вычисление такого параметра, как объём, необходимо помнить, что требуется первоначальное знание параметра, который и будет исходным данным для такой процедуры.

Необходимо иметь значение высоты. Это расстояние от нижнего и верхнего основания фигуры. При этом в зависимости от типа она может определяться по-разному. В ситуации прямоугольного цилиндра высота соответствует расстоянию между основаниями фигуры. Если же он относится к наклонному типу, то расстояние будет вычисляться иным путём. Это параметр, который соответствует длине прямой проведённой под прямым углом от одного основания до плоскости, на которой лежит второе основание.

После определения такого значения можно приступать к вычислению объёма.

Расчет объема цилиндра

Определение объемов строительных форм

Вопрос определения объемов играет немаловажную роль в строительстве. Возведение домов, других сооружений – дело затратное, стройматериалы требуют внимательного отношения и предельно точного расчета.

как посчитать объем бетона

Основа здания – фундамент – представляет собой обычно литую конструкцию, заполняемую бетоном. Перед тем как посчитать объем бетона, необходимо определить тип фундамента.

Плитный фундамент – плита в виде прямоугольного параллелепипеда. Столбчатое основание – прямоугольные или цилиндрические столбы определенного сечения. Определив объем одного столба и умножив его на количество, можно рассчитать кубатуру бетона на весь фундамент.

Рассчитывая объем бетона для стен или перекрытий, поступают достаточно просто: определяют объем всей стены, умножая длину на ширину и высоту, затем отдельно определяют объемы оконных и дверных проемов. Разность объема стены и суммарного объема проемов – объем бетона.

5 Объем правильного тетраэдра

Формула объема правильного тетраэдра:

V = a3√2
12

где V – объем правильного тетраэдра,
a – длина ребра правильного тетраэдра

Методы расчёта

Существует два основных метода, которые позволяют производить вычисление такого параметра.

  1. Метод вычисления объёма цилиндра на основе высоты геометрической фигуры. Этот метод является универсальным средством и может быть использован для фигур любого типа как прямоугольных, так и наклонных цилиндров. Дополнительно к значению высоты в данном способе следует знать и площадь основания. Если остановиться подробнее на данном параметре, то надо отметить что основанием является круг. Поэтому вычисление площади круга происходит на основе радиуса. Таким образом, вторым параметром в данном методе должен выступать радиус основания цилиндра. Тогда площадь определяется согласно стандартной формуле.

S= П *R^2

В данной формуле принято следующее обозначение при помощи переменных:

  • П – это параметр, обозначающий соотношение между длиной и радиусом окружности, равный 3,1415928.
  • R – Радиус окружности, лежащий в основании цилиндра.
  • S – Площадь основания фигуры.

Вычисление непосредственно объёма цилиндра производится на основе стандартной формулы.

V=S*h

В данной формуле принято следующее обозначение при помощи переменных:

  • S – Площадь основания цилиндра, имеющего форму круга.
  • h – Высота геометрической фигуры.
  • V – объём цилиндра.
  1. Вторым методом, позволяющим произвести вычисление объёма данной фигуры, является соотношение таких параметров, как высота цилиндра и радиуса его основания. По сути, данная формула является преобразованной формулой первого метода. В ней нет разделения на промежуточные этапы подсчёта параметров. Сразу же включены все математические операции.

Таким образом, в ней одновременно производится подсчёт площади круга и объёма цилиндра.

Приведём формулу расчёта объёма цилиндра для данного метода.

V= П *R^2*h

В данной формуле принято следующее обозначение при помощи переменных:

  • П – это параметр, обозначающий соотношение между длиной и радиусом окружности, равный 3,1415928.
  • R – Радиус окружности, лежащий в основании цилиндра.
  • h – Высота геометрической фигуры.
  • V – Объём цилиндра.

Как определить объем здания?

Некоторые прикладные задачи требуют знаний об объеме зданий и сооружений. К ним относятся проблемы ремонта, реконструкции, определения влажности воздуха, вопросы, связанные с теплоснабжением и вентиляцией.

Прежде чем ответить на вопрос о том, как посчитать объем здания, делают замеры по внешней его стороне: площади сечения (длина умножается на ширину), высоты здания от нижней части первого этажа до чердака.

Определение внутренних объемов отапливаемых помещений проводят по внутренним обводкам.

как посчитать объем здания

Устройство систем отопления

Современные квартиры и офисы невозможно представить без системы отопления. Основной частью систем являются батареи и соединительные трубы. Как посчитать объем системы отопления? Полный объем всех секций отопления, который указан на самом радиаторе, необходимо сложить с объемом труб.

И на этом этапе встает проблема: как посчитать объем трубы. Представим, что труба – цилиндр, решение приходит само собой: используем формулу расчета объема цилиндра. В отопительных системах трубы заполняются водой, поэтому необходимо знать площадь внутреннего сечения трубы. Для этого определяем ее внутренний радиус (R). Формула определения площади круга: S=πR 2 . Общая длина труб определяется по их протяженности в помещении.

Канализация в доме – система труб

Закладывая трубы для водоотведения, также стоит знать объем трубы. На этом этапе необходим внешний диаметр, действия аналогичны предыдущим.

Определение объема металла, который идет на изготовление трубы – также интересная задача. Геометрически труба – цилиндр с пустотами. Определить площадь кольца, лежащего в ее сечении – задача достаточно сложная, но решаемая. Более простой выход – определить внешний и внутренний объемы трубы, разность этих величин и будет объемом металла.

Как рассчитать объем кастрюли в литрах, формула

Чтобы рассчитать объем кастрюли в литрах необходимо измерить диаметры и высоту емкости.

В зависимости от формы кастрюли, диаметры могут отличаться.

Желательно снимать размеры изнутри, чтобы убрать из расчета толщину стенок. И как было сказано выше, высоту кастрюли замеряют под прямым углом к ее основанию.

Далее, полученные значения необходимо подставить в формулу:

Объем кастрюли = ( 1/3 * Пи * h * ( (D/2)² + ((D/2) * (d/2) ) + (d/2)² ) ) / 1000

Обратите внимание — значения подставляют в формулу в единой мере измерения, в нашем случае — это сантиметры.

Единицы измерения объема жидкости

как посчитать объем трубы

Использование в повседневной жизни иных внесистемных мер может вызвать трудности. Англичане используют более привычные для них баррели, галлоны, бушели.

Английский баррель для сыпучих веществ

Задачи с нестандартными данными

Задача 1. Как посчитать объем, зная высоту и площадь? Обычно такую задачу решают, определяя объем покрытия различных деталей гальваническим путем. При этом площадь поверхности детали (S) известна. Толщина слоя (h) – высота. Объем определяют произведением площади и высоты: V=Sh.

Задача 2. Для кубов интересной, с математической точки зрения, может выглядеть задача определения объема, если известна площадь одной грани. Известно, что объем куба: V=a 3 , где а – длина его грани. Площадь боковой поверхности куба S=a 2 . Извлекая квадратный корень из площади, получаем длину грани куба. Используем формулу объема, вычисляем его значение.

Задача 3. Вычислить объем фигуры, если известна площадь и даны некоторые параметры. К дополнительным параметрам можно отнести условия соотношения сторон, высот, диаметров основания и многое другое.

Для решения конкретных задач понадобятся не только знания формул расчета объемов, но и другие формулы геометрии.

11 Как определить объём сферического изделия

Сферические изделия встречаются в нашей жизни почти каждый день. Это может быть элемент подшипника, футбольный мяч или пишущая часть шариковой ручки. В некоторых случаях нам необходимо узнать, как рассчитать кубатуру сферы для определения количества жидкости в ней.

Как утверждают эксперты, для вычисления объёма этой фигуры используется формула V=4/3ԉr3, где:

  • V – подсчитываемый объём детали;
  • R- радиус сферы;
  • ԉ – постоянная величина, которая равняется 3,14.

Для проведения необходимых вычислений нам нужно взять рулетку, зафиксировать начало измерительной шкалы и провести замер, причём лента рулетки должна проходить по экваторe шара. После этого узнают диаметр детали, поделив размер на число ԉ.

Рассчитать объем бака в литрах по размерам

А теперь ознакомимся с конкретным примером вычисления для сферы, если её длина по окружности равняется 2,5 метрам. Сначала определим диаметр 2,5/3,14=0,8 метра. Теперь подставляем это значение в формулу:

14 Способы перевода кубометров в другие кубические единицы

Рассчитывая объемности, необходимо придерживаться одинаковых единиц замеров. Если данные представлены другими единицами, а конечный результат должен быть получен в кубах, то достаточно будет правильно сделать преобразование.

Если V измерен в мм3, см3, дм3, л, то в м3 переводим соответственно:

  • 1 м3 = 1 мм3 х х 0, 000000001 = 1 мм3 х 10-9;
  • 1 м3 = 1 см3 х 0, 000001 = 1 см3 х 10-6;
  • 1 м3 = 1 дм3 х 0,001 = 1 дм3 х 10-3. Такой же перевод применяют и для литров, поскольку в 1 л содержится 1 дм3.

Чтобы найти кубы вещества, зная его массу, нужно по таблице отыскать его плотность или определить вручную. Разделив заданную массу М (кг) на показатель плотности Р (кг/ м3), получим V материала (м3).

Подсчитать кубические метры не составляет трудностей для человека, не имеющего математических наклонностей, несмотря на то что в каждом случае требуется разный подход.

Знания для определения объемов необходимы и специалистам, и обычным людям в повседневной жизни.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий