Как сложить три дроби

Как сложить три дроби

Калькулятор дробей выполнит основные арифметические действия с дробями и смешанными числами.

Если целая часть заполнена, калькулятор приведет смешанное число в неправильную дробь и выполнит операцию.

Заполните поля калькулятора чтобы найти сумму, разность, произведение и отношение дробей.

Основные операции с дробями

Сложение и вычитание

Чтобы сложить дроби с разными знаменателями необходимо: привести дробные части к наименьшему общему знаменателю; затем сложить их числители. Рассмотрим на примере как сложить две дроби с разными знаменателями.

Пример Сложить дроби дробь одна восьмаяи дробь пять шестых

результат сложения дробей одна восьмая плюс дробь пять шестых.

Наименьшее общее кратное знаменателей (8 и 6) равно 24.

Для нахождения разности дробей необходимо: привести дробные части к наименьшему общему знаменателю; затем выполнить вычитание числителей.

Пример Найти разность дробей дробь девять шестнадцатыхи семть двадцатых

разность дробей девять шестнадцатых минус семь двадцатых.

Общее кратное знаменателей НОК(16, 20)=80. Для вычисления наименьшего общего кратного можно воспользоваться калькулятором. Калькулятор вычислит НОК автоматически.

Умножение и деление

Для умножения двух дробей нужно: перемножить их числители и знаменатели правило умножения дробей.

Пример Найти произведение дробей дробь семь восемнадцатыхи дробь три четвертых

умножение дробей: семь восьмых на три четвертых.

Чтобы разделить дробь на другую нужно: умножить первую дробь на дробь, обратную второй: деление дробей.

Пример Разделить дробь дробь четыре пятыхна дробь три десятых

деление дробей четыре пятых на три десятых.

Приведение к общему знаменателю

Чтобы совершать операции с дробями часто требуется привести дроби к общему знаменателю. Рассмотрим процесс приведения двух дробей дробь три восьмыхи пять двенадцатыхк наименьшему общему знаменателю :

  • 1 Находим наименьшее общее кратное знаменателей: НОК(8, 12)=24. Число 24 является наименьшим общим знаменателем двух дробей, приведем обе дроби к данному знаменателю. Любые две дроби можно привести к одинаковому знаменателю.
  • 2 Вычисляем дополнительный множитель первой дроби вычисляем дополнительный множитель для дроби 3/8. Умножаем числитель и знаменатель на дополнительный множитель 3, получаем дробь дробь 3/8 преобразуем в 9/24 путем умножения на 3.
  • 3 Вычислим дополнительный множитель второй дроби вычисляем дополнительный множитель для дроби 5/12. Умножаем числитель и знаменатель на дополнительный множитель 2, получаем дробь дробь 5/12 преобразуем в 10/24 путем умножения на 2.
  • 4 В результате получим дроби дробь 9/24и дробь 10/24с одинаковым знаменателем равным 24.
Пример Сравнить дроби дробь семь восемнадцатыхи дробь три четвертых

Для сравнения дробей приведем их к общему знаменателю и сравним их числители. Воспользуемся шагами описанными выше и найдем наименьшее общее кратное знаменателей дробей и далее преобразуем:

сравнение дробей: 7/18 и 3/4.

НОК(18, 4)=36, дополнительный множитель первой дроби дополнительный множитель дроби 7/18, доп. множитель второй дроби дополнительный множитель дроби 3/4.

Основное свойство дроби

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

1 Сложение и вычитание дробей с одинаковыми знаменателями

Чтобы сложить дроби с одинаковыми знаменателями, надо сложить их числители, а знаменатель оставить тот же, например:

др24

Чтобы вычесть дроби с одинаковыми знаменателями, надо из числителя первой дроби вычесть числитель второй дроби, а знаменатель оставить тот же, например:

др25

Чтобы сложить смешанные дроби, надо отдельно сложить их целые части, а затем сложить их дробные части, и записать результат смешанной дробью,

Если при сложении дробных частей получилась неправильная дробь, выделяем из нее целую часть и прибавляем ее к целой части, например:

др28

Основные свойства дробей

1. Дробь не имеет значения, при условии, если делитель равен нулю.

2. Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

3. Равными называются такие a/b и c/d, если:

  • a * d = b * c.

4. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Сложение дробей с одинаковыми знаменателями.

На примере посмотрим, как складывать дроби с общим знаменателем.

Туристы пошли в поход из точки A в точку E. В первый день они прошли от точки A до B или (frac) от всего пути. Во второй день они прошли от точки B до D или (frac) от всего пути. Какое расстояние они прошли от начала пути до точки D?

Сложение дробей

Решение:

Чтобы найти расстояние от точки A до точки D нужно сложить дроби (frac + frac).

Сложение дробей с одинаковыми знаменателями заключается в том, что нужно числители этих дробей сложить, а знаменатель останется прежний.

В буквенном виде сумма дробей с одинаковыми знаменателями будет выглядеть так:

Ответ: туристы прошли (frac) всего пути.

Сложение смешанных чисел (смешанных дробей).

Правила сложения смешанных дробей:

  • приводим дробные части этих чисел к наименьшему общему знаменателю (НОЗ);
  • отдельно складываем целые части и отдельно дробные части, складываем результаты;
  • если при сложении дробных частей получили неправильную дробь, выделяем целую часть из этой дроби и прибавляем ее к полученной целой части;
  • сокращаем полученную дробь.

Пример сложения смешанной дроби :

Дроби. Сложение дробей.

3 Наименьшее общее кратное (НОК)

Наименьшее общее кратное двух чисел (НОК) — это наименьшее натуральное число, которое делится на оба эти числа без остатка. Иногда НОК можно подобрать устно, но чаще, особенно при работе с большими числами, приходится находить НОК письменно, с помощью следующего алгоритма:

Для того, чтобы найти НОК нескольких чисел, нужно:

  1. Разложить эти числа на простые множители
  2. Взять самое большое разложение, и записать эти числа в виде произведения
  3. Выделить в других разложениях числа, которые не встречаются в самом большом разложении (или встречаются в нем меньшее число раз), и добавить их к произведению.
  4. Перемножить все числа в произведении, это и будет НОК.

Например, найдем НОК чисел 28 и 21:

др22

4 Приведение дробей к одному знаменателю

Вернемся к сложению дробей с разными знаменателями.

Когда мы приводим дроби к одинаковому знаменателю, равному НОК обоих знаменателей, мы должны умножить числители этих дробей на дополнительные множители. Найти их можно, разделив НОК на знаменатель соответствующей дроби, например:

др29

Таким образом, чтобы привести дроби к одному показателю, нужно сначала найти НОК (то есть наименьшее число, которое делится на оба знаменателя) знаменателей этих дробей, затем поставить дополнительные множители к числителям дробей. Найти их можно, разделив общий знаменатель (НОК) на знаменатель соответствующей дроби. Затем нужно умножить числитель каждой дроби на дополнительный множитель, а знаменателем поставить НОК.

5 Как сложить целое число и дробь

Для того, чтобы сложить целое число и дробь, нужно просто добавить это число перед дробью, при этом получится смешанная дробь, например:

др30

Если мы складываем целое число и смешанную дробь, мы прибавляем это число к целой части дроби, например:

Сложение десятичной дроби с обыкновенной дробью

Правило сложения десятичных дробей с обыкновенной дробью:

Сложение десятичной дроби с обыкновенной дробью сводится к сложению обыкновенных дробей. Для этого десятичная дробь переводится в обыкновенную дробь.

Пример. Выполнить сложение десятичной дроби 0,28 и обыкновенной дроби сложение дробей и десятичных чисел.

Решение. Переводим десятичную дробь 0,28 в обыкновенную: сложение десятичных дробей 5 класс. И далее выполняем уже сложение обыкновенных дробей математика десятичные дроби сложениеи сложение десятичных дробей примеры:

Действия с дробями

С дробями можно выполнять те же действия, что и с обычными числами: складывать, вычитать, умножать и делить. А еще дроби можно сокращать и сравнивать между собой. Давайте попробуем.

Сокращение дробей

Сокращение дроби — это деление числителя и знаменателя дроби на одно и то же натуральное число. Сократить дробь значит сделать ее короче и проще для восприятия. Например, дробь 1/3 выглядит намного проще и красивее, чем 27/81.

Сокращение дроби выглядит так: зачеркивают числитель и знаменатель, а рядом записывают результаты деления числителя и знаменателя на одно и то же число.

До и после сокращения

В этом примере делим обе части дроби на двойку.

Сравнение дробей

Можно никуда не спешить и сокращать дроби последовательно, в несколько действий.

Сравнение дробей

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий